262 research outputs found

    A randomised, prospective and head-to-head comparison of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 for the detection of recurrent prostate cancer in PSMA-ligand PET/CT-Protocol design and rationale.

    Get PDF
    BACKGROUND A number of radiopharmaceuticals are available for the detection of recurrent prostate cancer (rPC), but few comparative imaging trials have been performed comparing them. In particular, there are no prospective head-to-head comparisons of the recently introduced [18F]PSMA-1007 to the existing standard of care [68Ga]Ga-PSMA-11. The purpose of this trial is to establish the non-inferiority of the new radiopharmaceutical in terms of the rate of PET-positive findings and to obtain an intra-individual comparison of accuracy and radiopharmaceutical kinetics. METHODS In this cross-over trial we will randomise 100 individuals to receive either first a standard-of-care PET/CT using [68Ga]Ga-PSMA-11 followed by an additional [18F]PSMA-1007 PET/CT within 2 weeks, or vice-versa. Inclusion criteria include patients 18 years and older with biochemical recurrence of prostate cancer following radical prostatectomy, defined as two consecutive prostate specific antigen (PSA) levels > 0.2 ng/ml. Detection rate at the patient-based level is the primary end-point. Each scan will be interpreted by a panel of six independent and masked readers (three for [68Ga]Ga-PSMA-11 and three for [18F]PSMA-1007) which consensus majority in cases of discrepancy. To confirm the PET-positivity rate at a patient based level, follow up at 6 months following the first scan will be performed to a composite standard of truth. Secondary endpoints shall include an intra-individual comparison of radiopharmaceutical-kinetics, per-region detection rate and positive predictive value. DISCUSSION This is the first randomised prospective comparative imaging trial to compare the established [68Ga]Ga-PSMA-11 with [18F]PSMA-1007 and will determine whether the new radiopharmaceutical is non-inferior to the established standard-of-care in terms of patient-level detection rate. CLINICAL TRIAL REGISTRATION Registered with and approved by the regional ethics authority #2020-02903 (submitted 09.12.2020, approval 16.12.2021) and the regulatory authority SwissMedic 2020DR2103. Registered with ClinicalTrials.gov Identifier NCT05079828 and additionally in a national language in the Swiss National Clinical Trials Portal (SNCTP)

    Assessment of malignancy and PSMA expression of uncertain bone foci in [18F]PSMA-1007 PET/CT for prostate cancer-a single-centre experience of PET-guided biopsies.

    Get PDF
    PURPOSE Uncertain focal bone uptake (UBU) with intensive radiopharmaceutical avidity are frequently observed in patients undergoing [18F]PSMA-1007 PET/CT for the detection of prostate cancer (PC). Such foci can pose diagnostic conundrums and risk incorrect staging. The aim of this short communication is to share the results of PET-guided biopsies of such foci. METHODS A retrospective analysis revealed 10 patients who were referred to our department for PET-guided biopsy of UBU visible in a previous [18F]PSMA-1007 PET/CT. [18F]-PSMA-1007 PET-guided biopsy was conducted for 11 PSMA-avid bone foci in these 10 patients. The biopsy materials were analysed for tissue typing, and immunohistochemistry (IHC) was performed for prostate-specific-membrane-antigen (PSMA) expression. The scans were analysed by two experienced physicians in a consensus read for clinical characteristics and radiopharmaceutical uptake of foci. RESULTS One out of 11 (9.1%) of the foci biopsied was confirmed as bone metastasis of PC with intense PSMA-expression, while 10/11 (90.9%) foci were revealed to be unremarkable bone tissue without evidence of PSMA expression at IHC. Amongst all bone foci assessed by biopsy, eight were visually classified as being at high risk of malignancy in the PET/CT (SUVmean 12.0 ± 8.1; SUVmax 18.8 ± 13.1), three as equivocal (SUVmean 4.6 ± 2.1; SUVmax 7.2 ± 3.0) and zero as low risk. No UBU had any CT correlate. CONCLUSIONS This cohort biopsy revealed that a small but relevant number of UBU are true metastases. For those confirmed as benign, no PSMA expression at IHC was observed, suggesting a non-PSMA mediated cause for intensive [18F]PSMA-1007 uptake of which the reason remains unclear. Readers must interpret such foci with caution in order to reduce the risk of erroneous staging and subsequent treatment. PET-guided biopsy, particularly in the absence of morphological changes in the CT, can be a useful method to clarify such foci

    Diagnostic accuracy of [18F]PSMA-1007 PET/CT in biochemical recurrence of prostate cancer.

    Get PDF
    AIM Despite increasing use for the detection of biochemically recurrent prostate cancer (rPC), the diagnostic accuracy of positron emission tomography/computed tomography (PET/CT) with [18F]PSMA-1007 remains only partially investigated. The aim of this study was to determine the sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV) for PC-local recurrence and metastases on a per region basis. MATERIALS AND METHODS One hundred seventy-seven consecutive patients undergoing [18F]PSMA-1007 PET/CT for rPC were retrospectively analysed. Six body regions were defined: prostate fossa, pelvic lymph nodes (LN), retroperitoneal LN, supradiaphragmatic LN, bones, and soft tissue. A region was counted positive if at least one PSMA-positive lesion suspicious for PC was observed. Confirmation of a true-positive PSMA-avid lesion was defined as positive by histopathology, fall in serum prostate-specific antigen (PSA) (> 50%) after targeted therapy or confirmatory further CT, MRI, PET/CT, or bone scan imaging. Regions where additional imaging was able to confirm the absence of suspicious PC lesions or regions outside exclusively targeted RT with serum PSA decline (> 50%) were counted as true-negative regions. SE, SP, PPV, and NPV were calculated for all six regions. RESULTS The overall PET-positivity rate was 91%. Conclusive follow-up for affirmation or refutation of a PSMA-positive lesion was available for 81/152 patients on a per region basis. In this subgroup, overall sensitivity, specificity, PPV, and NPV were 95% (CI: 0.90-0.98), 89% (CI: 0.83-0.93), 86% (0.80-0.90), and 96% (CI: 0.92-0.98), respectively. On a per region basis, PPV was 97% (CI: 0.83-0.99) for local recurrence, 93% (CI: 0.78-0.98) for pelvic LN, 87% (CI: 0.62-0.96) for retroperitoneal LN, 82% (CI: 0.52-0.95) for supradiaphragmatic LN, and 79% (0.65-0.89) for bone lesions. The number of solid organ metastases (n = 6) was too small for an accurate statistical analysis. CONCLUSION The known high PET-positivity rate of [18F]PSMA-1007 PET/CT in rPC was confirmed, with corresponding high (> 90%) sensitivity and NPV on a per region basis. However, overall PPV was limited (86%), particularly for bone lesions (79%), which are a potential diagnostic weaknesses when using this tracer

    Combined [68 Ga]Ga-PSMA-11 and low-dose 2-[18F]FDG PET/CT using a long-axial field of view scanner for patients referred for [177Lu]-PSMA-radioligand therapy.

    Get PDF
    PURPOSE Performing 2-[18F]FDG PET/CT in addition to a PSMA-ligand PET/CT can assist in the detection of lesions with low PSMA expression and may help in prognostication and identification of patients who likely benefit from PSMA-radioligand therapy (PSMA-RLT). However, the cost and time needed for a separate PET/CT examination might hinder its routine implementation. In this communication, we present our initial experiences with additional low-dose 2-[18F]FDG PET/CT as part of a dual-tracer and same-day imaging protocol which exploits the higher sensitivity exhibited by long-axial field-of-view (LAFOV) and total-body PET/CT systems and demonstrates its feasibility. METHODS Fourteen patients referred for evaluation for PSMA-RLT received [68 Ga]Ga-PSMA-11 PET/CT at 1 h p.i. with a standard activity of 150 MBq and an additional low-dose 2-[18F]FDG PET/CT with 40 MBq 1 h thereafter using a long-axial field-of-view PET/CT system in a single sitting and as per institutional protocol. Scans were scrutinized by two experienced nuclear medicine physicians for mismatch findings. RESULTS The combined protocol identified additional lesions with low or absent PSMA-expression but high FDG-avidity in 1/14 (7%) patients. The protocol was easily implemented and well tolerated by all patients. CONCLUSION Additional low-dose 2-[18F]FDG-PET/CT is feasible as part of a same-day imaging protocol and can help reveal lesions of low PSMA avidity as part of therapy assessment for [177Lu]-PSMA radioligand therapy and demonstrates higher sensitivity compared to [68 Ga]Ga-PSMA-11 PET/CT alone in some patients

    New thresholds in semi-quantitative [18F]FDG PET/CT are needed to assess large vessel vasculitis with long-axial field-of-view scanners.

    Get PDF
    AIM [18F]FDG PET/CT proved accurate in the diagnostic work-up of large vessel vasculitis (LVV). While a visual interpretation is currently considered adequate, several attempts have been made to integrate it with a semiquantitative evaluation. In this regard, there is the need to validate current or new thresholds for the semiquantitative parameters on long-axial field of view (LAFOV) scanners. METHODS We retrospectively evaluated 100 patients (50 with LVV and 50 controls) who underwent [18F]FDG LAFOV PET/CT. Semiquantitative parameters (SUVmax and SUVmean) were calculated for large vessels in 3 districts (supra-aortic [SA], thoracic aorta [TA], and infra-aortic [IA]). Values were also normalized to liver activity (SUVmax/L-SUVmax, and SUVmax/L-SUVmean). RESULTS Of the 50 patients diagnosed with LVV, SA vessels were affected in 38 (76%), TA in 42 (84%) and IA vessels in 26 (52%). To-liver normalized values had higher diagnostic accuracy than non-normalized values (AUC always ≥ 0.90 vs. 0.74-0.89). For the SA vessels, best thresholds were 0.66 for SUVmax/L-SUVmax and 0.88 for SUVmax/L-SUVmean; for the TA, 1.0 for SUVmax/L-SUVmax and 1.30 for SUVmax/L-SUVmean; finally, for IA vessels, the best threshold was 0.83 for SUVmax/L-SUVmax and 1.11 for SUVmax/L-SUVmean. CONCLUSION LAFOV [18F]FDG-PET/CT is accurate in the diagnostic workup of LVV, but different threshold in semi-quantitative parameters than reported in literature for standard scanners should be considered

    Phantom study for 90Y post-treatment dosimetry with a long axial field-of-view PET/CT

    Full text link
    Purpose: The physical properties of yttrium-90 (90Y) allow for imaging with positron emission tomography/computed tomography (PET/CT). The increased sensitivity of long axial field-of-view (LAFOV) PET/CT scanners possibly allows to overcome the small branching ratio for positron production from 90Y decays and to improve for the post-treatment dosimetry of 90Y of selective internal radiation therapy. Methods: For the challenging case of an image quality body phantom, we compare a full Monte Carlo (MC) dose calculation with the results from the two commercial software packages Simplicit90Y and Hermes. The voxel dosimetry module of Hermes relies on the 90Y images taken with a LAFOV PET/CT, while the MC and Simplicit90Y dose calculations are image independent. Results: The resulting doses from the MC calculation and Simplicit90Y agree well within the error margins. The image-based dose calculation with Hermes, however, consistently underestimates the dose. This is due to the mismatch of the activity distribution in the PET images and the size of the volume of interest. Furthermore, there are likely limitations of Hermes' dose calculation algorithm for 90Y. We found that only for the smallest phantom sphere there is a statistically significant dependence of the Hermes dose on the image reconstruction parameters and scan time. Conclusion: Our study shows that Simplicit90Y's local deposition model can provide a reliable dose estimate. On the other hand, the image based dose calculation requires further benchmarks and verification in order to take full advantage of LAFOV PET/CT systems

    Phantom-based evaluation of yttrium-90 datasets using biograph vision quadra.

    Get PDF
    PURPOSE The image quality characteristics of two NEMA phantoms with yttrium-90 (90Y) were evaluated on a long axial field-of-view (AFOV) PET/CT. The purpose was to identify the optimized reconstruction setup for the imaging of patients with hepatocellular carcinoma after 90Y radioembolization. METHODS Two NEMA phantoms were used, where one had a 1:10 sphere to background activity concentration ratio and the second had cold background. Reconstruction parameters used are as follows: iterations 2 to 8, Gaussian filter 2- to 6-mm full-width-at-half-maximum, reconstruction matrices 440 × 440 and 220 × 220, high sensitivity (HS), and ultra-high sensitivity (UHS) modes. 50-, 40-, 30-, 20-, 10-, and 5-min acquisitions were reconstructed. The measurements included recovery coefficients (RC), signal-to-noise ratio (SNR), background variability, and lung error which measures the residual error in the corrections. Patient data were reconstructed with 20-, 10-, 5-, and 1-min time frames and evaluated in terms of SNR. RESULTS The RC for the hot phantom was 0.36, 0.45, 0.53, 0.63, 0.68, and 0.84 for the spheres with diameters of 10, 13, 17, 22, 28, and 37 mm, respectively, for UHS 2 iterations, a 220 × 220 matrix, and 50-min acquisition. The RC values did not differ with acquisition times down to 20 min. The SNR was the highest for 2 iterations, measured 11.7, 16.6, 17.6, 19.4, 21.9, and 27.7 while the background variability was the lowest (27.59, 27.08, 27.36, 26.44, 30.11, and 33.51%). The lung error was 18%. For the patient dataset, the SNR was 19%, 20%, 24%, and 31% higher for 2 iterations compared to 4 iterations for 20-, 10-, 5-, and 1-min time frames, respectively. CONCLUSIONS This study evaluates the NEMA image quality of a long AFOV PET/CT scanner with 90Y. It provides high RC for the smallest sphere compared to other standard AFOV scanners at shorter scan times. The maximum patient SNR was for 2 iterations, 20 min, while 5 min delivers images with acceptable SNR

    Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients.

    Get PDF
    Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed

    EARL compliance measurements on the biograph vision Quadra PET/CT system with a long axial field of view.

    Get PDF
    BACKGROUND Our aim was to determine sets of reconstruction parameters for the Biograph Vision Quadra (Siemens Healthineers) PET/CT system that result in quantitative images compliant with the European Association of Nuclear Medicine Research Ltd. (EARL) criteria. Using the Biograph Vision 600 (Siemens Healthineers) PET/CT technology but extending the axial field of view to 106 cm, gives the Vision Quadra currently an around fivefold higher sensitivity over the Vision 600 with otherwise comparable spatial resolution. Therefore, we also investigated how the number of incident positron decays-i.e., exposure-affects EARL compliance. This will allow estimating a minimal acquisition time or a minimal applied dose in clinical scans while retaining data comparability. METHODS We measured activity recovery curves on a NEMA IEC body phantom filled with an aqueous 18F solution and a sphere to background ratio of 10-1 according to the latest EARL guidelines. Reconstructing 3570 image sets with varying OSEM PSF iterations, post-reconstruction Gaussian filter full width at half maximum (FWHM), and varying exposure from 59 kDecays/ml (= 3 s frame duration) to 59.2 MDecays/ml (= 1 h), allowed us to determine sets of parameters to achieve compliance with the current EARL 1 and EARL 2 standards. Recovery coefficients (RCs) were calculated for the metrics RCmax, RCmean, and RCpeak, and the respective recovery curves were analyzed for monotonicity. The background's coefficient of variation (COV) was also calculated. RESULTS Using 6 iterations, 5 subsets and 7.8 mm Gauss filtering resulted in optimal EARL1 compliance and recovery curve monotonicity in all analyzed frames, except in the 3 s frames. Most robust EARL2 compliance and monotonicity were achieved with 2 iterations, 5 subsets, and 3.6 mm Gauss FWHM in frames with durations between 30 s and 10 min. RCpeak only impeded EARL2 compliance in the 10 s and 3 s frames. CONCLUSIONS While EARL1 compliance was robust over most exposure ranges, EARL2 compliance required exposures between 1.2 MDecays/ml to 11.5 MDecays/ml. The Biograph Vision Quadra's high sensitivity makes frames as short as 10 s feasible for comparable quantitative images. Lowering EARL2 RCmax limits closer to unity would possibly even permit shorter frames

    Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects

    Get PDF
    Brain changes reminiscent of Alzheimer disease (AD) have been previously reported in a substantial portion of elderly cognitive healthy (HC) subjects. The major aim was to evaluate the accuracy of MRI assessed regional gray matter (GM) volume, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET),and neuropsychological test scores to identify those HC subjects who subsequently convert to mild cognitive impairment (MCI) or AD dementia. We obtained in 54 healthy control (HC) subjects a priori defined region of interest (ROI) values of medial temporal and parietal FDG-PET and medial temporal GM volume. In logistic regression analyses, these ROI values were tested together with neuropsychological test scores (free recall, trail making test B (TMT-B)) as predictors of HC conversion during a clinical follow-up between 3 and 4 years. In voxelbased analyses, FDG-PET and MRI GM maps were compared between HC converters and HC non-converters. Out of the 54 HC subjects, 11 subjects converted to MCI or AD dementia. Lower FDG-PET ROI values were associated with higher likelihood of conversion (p = 0.004),with the area under the curve (AUC) yielding 82.0% (95% CI = (95.5%,68.5%)). The GM volume ROI was not a significant predictor (p = 0.07). TMT-B but not the free recall tests were a significant predictor (AUC = 71% (95% CI = 50.4%,91.7%)). For the combination of FDG-PET and TMT-B, the AUC was 93.4% (sensitivity = 82%,specificity = 93%). Voxel-based group comparison showed reduced FDG-PET metabolism within the temporo-parietal and prefrontal cortex in HC converters. In conclusion, medial temporal and-parietal FDG-PET and executive function show a clinically acceptable accuracy for predicting clinical progression in elderly HC subjects. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved
    corecore